On estimation of the number of image principal colors and color reduction through self-organized neural networks
نویسندگان
چکیده
A new technique suitable for reduction of the number of colors in a color image is presented in this article. It is based on the use of the image Principal Color Components (PCC), which consist of the image color components and additional image components extracted with the use of proper spatial features. The additional spatial features are used to enhance the quality of the final image. First, the principal colors of the image and the principal colors of each PCC are extracted. Three algorithms were developed and tested for this purpose. Using Kohonen self-organizing feature maps (SOFM) as classifiers, the principal color components of each PCC are obtained and a look-up table, containing the principal colors of the PCC, is constructed. The final colors are extracted from the look-up table entries through a SOFM by setting the number of output neurons equal to the number of the principal colors obtained for the original image. To speed up the entire algorithm and reduce memory requirements, a fractal scanning subsampling technique is employed. The method is independent of the color scheme; it is applicable to any type of color images and can be easily modified to accommodate any type of spatial features. Several experimental and comparative results exhibiting the performance of the proposed technique are presented. © 2002 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 12, 117–127, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI
منابع مشابه
کاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کاملColor reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas
A new method for color reduction in a digital image is proposed, which is based on the development of a new neural network classifier and on a new method for Estimation of the Most Important Classes (EMIC). The proposed neural network combines the features of the well-known Growing Neural Gas (GNG) and the Kohonen Self-Organized Feature Map (KSOFM) neural networks. We call the new neural networ...
متن کاملAdaptive color reduction
The paper proposes an algorithm for reducing the number of colors in an image. The proposed adaptive color reduction (ACR) technique achieves color reduction using a tree clustering procedure. In each node of the tree, a self-organized neural network classifier (NNC) is used which is fed by image color values and additional local spatial features. The NNC consists of a principal component analy...
متن کاملColor reduction by using a new self-growing and self-organized neural network
A new method for the reduction of the number of colors in a digital image is proposed. The new method is based on the developed of a new neural network classifier that combines the advantages of the Growing Neural Gas (GNG) and the Kohonen Self-Organized Feature Map (SOFM) neural networks. We call the new neural network: Self-Growing and SelfOrganized Neural Gas (SGONG). Its main advantage is t...
متن کاملColor Reduction in Hand-drawn Persian Carpet Cartoons before Discretization using image segmentation and finding edgy regions
In this paper, we present a method for color reduction of Persian carpet cartoons that increases both speed and accuracy of editing. Carpet cartoons are in two categories: machine-printed and hand-drawn. Hand-drawn cartoons are divided into two groups: before and after discretization. The purpose of this study is color reduction of hand-drawn cartoons before discretization. The proposed algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Imaging Systems and Technology
دوره 12 شماره
صفحات -
تاریخ انتشار 2002